SAARLAND UNIVERSITY

Department of Mathematics
Prof. Dr. Mark Groves
MSc Jens Horn

Mathematics for Computer Scientists 1, WS 2018/19 Sheet 5

1. Calculate $(1552303,233927)$ and find integers m and n such that

$$
(1552303,233927)=1552303 m+233927 n .
$$

2. Let a and b be natural numbers and $d=(a, b)$.
(a) Show that d is the smallest element of the set

$$
\{m a+n b: m, n \in \mathbb{Z}\} \cap \mathbb{N} .
$$

(b) Suppose there are integers m and n such that $m a+n b=1$. Deduce that $(a, b)=1$.
3. (a) Compute the solution set of the simultaneous equations

$$
\begin{aligned}
& x \equiv 2(\bmod 3), \\
& x \equiv 5(\bmod 7), \\
& x \equiv 8(\bmod 11)
\end{aligned}
$$

by applying the Chinese remainder theorem twice.
(b) What are the last two digits of the number 49^{19} ? [Hint: We want to compute the number $49^{19}(\bmod 100)$. Note that $100=25 \times 4$.]
4. (a) Show using Fermat's little theorem that 63 and 341 are not prime numbers.
[Hint: $62=6.10+2,340=3.113+1$ and

$$
\left.1 \equiv 2^{6}(\bmod 63), \quad 1 \equiv 56^{3}(\bmod 341) .\right]
$$

(b) Show using Fermat's little theorem that 561 and 32769 are not prime numbers.
(c) Let p be a prime number. Show using Fermat's little theorem that

$$
(a+b)^{p} \equiv\left(a^{p}+b^{p}\right)(\bmod p) .
$$

(d) Compute

$$
\left(3743^{3709}+7420^{11127}\right)^{3709}(\bmod 3709) .
$$

[Hint: 3709 is a prime number.]

