SAARLAND UNIVERSITY Department of Mathematics Prof. Dr. Mark Groves MSc Jens Horn

Mathematics for Computer Scientists 1, WS 2017/18 Sheet 5

- **1.** Prove the following results using the pigeon-hole principle.
 - (a) In every collection of 7 integers there are at least two whose difference is divisible by 6.
 - (b) Let n be a natural number. In every collection of $n^2 + 1$ points P_1, \ldots, P_{n^2+1} in a square of side length n there are at least two points separated by a distance of no more than $\sqrt{2}$.
 - (c) In every collection of 51 integers between 1 and 100 there are at least two whose sum is 101.

2. Prove that the set of all prime numbers is infinite. [Hint: Modify the proof that the set \mathbb{N} is infinite. You may assume that a natural number $m \ge 2$ is either a prime number or divisible by a prime number.]

- **3.** (a) Prove that the set of all finite subsets of N is countably infinite. [Hint: Arrange the subsets according to the sum of their elements.]
 - (b) Let A_1, A_2, A_3, \ldots be countably infinite sets. Prove that $\bigcup_{i=1}^{\infty} A_i$ is also countably infinite. [Hint: Denote the elements of A_i by $\{a_{i,1}, a_{i,2}, a_{i,3}, a_{i,4}, \ldots\}$ and apply a diagonal argument to count the elements $\{a_{i,j}\}_{i,j=1,2,\ldots}$ of $\bigcup_{i=1}^{\infty} A_i$.]
- 4. (a) Compute the solution set of the simultaneous equations

$$x \equiv 2 \pmod{3},$$

$$x \equiv 5 \pmod{7},$$

$$x \equiv 8 \pmod{11}$$

by applying the Chinese remainder theorem twice.

(b) What are the last two digits of the number 49^{19} ? [Hint: We want to compute the number 49^{19} (mod 100). Note that $100 = 25 \times 4$.]