SAARLAND UNIVERSITY

Department of Mathematics
Prof. Dr. Mark Groves
MSc Jens Horn

Mathematics for Computer Scientists 1, WS 2017/18 Sheet 5

1. Prove the following results using the pigeon-hole principle.
(a) In every collection of 7 integers there are at least two whose difference is divisible by 6.
(b) Let n be a natural number. In every collection of $n^{2}+1$ points $P_{1}, \ldots, P_{n^{2}+1}$ in a square of side length n there are at least two points separated by a distance of no more than $\sqrt{2}$.
(c) In every collection of 51 integers between 1 and 100 there are at least two whose sum is 101 .
2. Prove that the set of all prime numbers is infinite. [Hint: Modify the proof that the set \mathbb{N} is infinite. You may assume that a natural number $m \geq 2$ is either a prime number or divisible by a prime number.]
3. (a) Prove that the set of all finite subsets of \mathbb{N} is countably infinite. [Hint: Arrange the subsets according to the sum of their elements.]
(b) Let $A_{1}, A_{2}, A_{3}, \ldots$ be countably infinite sets. Prove that $\bigcup_{i=1}^{\infty} A_{i}$ is also countably infinite. [Hint: Denote the elements of A_{i} by $\left\{a_{i, 1}, a_{i, 2}, a_{i, 3}, a_{i, 4}, \ldots\right\}$ and apply a diagonal argument to count the elements $\left\{a_{i, j}\right\}_{i, j=1,2, \ldots}$ of $\bigcup_{i=1}^{\infty} A_{i}$.]
4. (a) Compute the solution set of the simultaneous equations

$$
\begin{aligned}
& x \equiv 2(\bmod 3) \\
& x \equiv 5(\bmod 7), \\
& x \equiv 8(\bmod 11)
\end{aligned}
$$

by applying the Chinese remainder theorem twice.
(b) What are the last two digits of the number 49^{19} ? [Hint: We want to compute the number $49^{19}(\bmod 100)$. Note that $100=25 \times 4$.]

