SAARLAND UNIVERSITY Department of Mathematics Prof. Dr. Mark Groves MSc Jens Horn

Mathematics for Computer Scientists 1, WS 2017/18 Sheet 3

1. The following tables show the results of the arithmetical operations in \mathbb{Z}_3 (where \oplus and \odot denote addition and multiplication modulo 3).

\oplus	[0]	[1]	[2]
[0]	[0]	[1]	[2]
[1]	[1]	[2]	[0]
[2]	[2]	[0]	[1]

\odot	[0]	[1]	[2]
[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]
[2]	[0]	[2]	[1]

- (a) Compute the corresponding tables for \mathbb{Z}_5 and \mathbb{Z}_7 .
- (b) Compute the corresponding tables for \mathbb{Z}_4 and show that $(\mathbb{Z}_4, \oplus, \odot)$ is not a field.

2. Let $n \ge 2$ be a natural number and $(\mathbb{Z}_n, \oplus, \odot)$ be a field (where \oplus and \odot denote addition and multiplication modulo n). Show that n is a prime number.

[Hint: Suppose that n is not a prime number, so that there exist $a, b \in \{2, ..., n-1\}$ with n = ab. What is $[a] \odot [b]$?]

3. Define the binary operations 'subtraction' and 'division' on the set of real numbers. Let a, b, c, d be real numbers with $b, d \neq 0$. Show that

$$\frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}, \qquad \frac{a}{b} / \frac{d}{c} = \frac{ac}{bd},$$

using only the axioms of arithmetic and your definitions.

4. Determine the real numbers x for which the following inequalities hold.

(a) $\frac{4x-5}{x^2-1} < 5$ (b) $\frac{5}{5x-1} < \frac{2}{2x+1}$ (c) $\frac{3x+2}{2x+3} < \frac{x}{x+1}$ (d) $\left| \frac{(x-1)(2x-3)}{x(x-5)} \right| > 1$ (e) $\log\left(\frac{2-x}{12+4x}\right) > 0$ (f) $e^x > 3^{x^2}$

5. Sketch the subsets

$$A_{1} = \left\{ (x, y) : 3x + 2y \le 6, \ x - y \le 2, \ x \le 1 \right\},$$
$$A_{2} = \left\{ (x, y) : |y| \le \frac{\sqrt{5}}{2}, \ |y - \sqrt{5}x| \le \sqrt{5}, \ |y + \sqrt{5}x| \le \sqrt{5} \right\}$$

of the (x, y) coordinate plane.