SAARLAND UNIVERSITY
Department of Mathematics
Prof. Dr. Mark Groves
MSc Jens Horn

Mathematics for Computer Scientists 1, WS 2017/18 Sheet 3

1. The following tables show the results of the arithmetical operations in \mathbb{Z}_{3} (where \oplus and \odot denote addition and multiplication modulo 3).

\oplus	$[0]$	$[1]$	$[2]$
$[0]$	$[0]$	$[1]$	$[2]$
$[1]$	$[1]$	$[2]$	$[0]$
$[2]$	$[2]$	$[0]$	$[1]$

\odot	$[0]$	$[1]$	$[2]$
$[0]$	$[0]$	$[0]$	$[0]$
$[1]$	$[0]$	$[1]$	$[2]$
$[2]$	$[0]$	$[2]$	$[1]$

(a) Compute the corresponding tables for \mathbb{Z}_{5} and \mathbb{Z}_{7}.
(b) Compute the corresponding tables for \mathbb{Z}_{4} and show that $\left(\mathbb{Z}_{4}, \oplus, \odot\right)$ is not a field.
2. Let $n \geq 2$ be a natural number and $\left(\mathbb{Z}_{n}, \oplus, \odot\right)$ be a field (where \oplus and \odot denote addition and multiplication modulo n). Show that n is a prime number.
[Hint: Suppose that n is not a prime number, so that there exist $a, b \in\{2, \ldots, n-1\}$ with $n=a b$. What is $[a] \odot[b]$?]
3. Define the binary operations 'subtraction' and 'division' on the set of real numbers. Let a, b, c, d be real numbers with $b, d \neq 0$. Show that

$$
\frac{a}{b}-\frac{c}{d}=\frac{a d-b c}{b d}, \quad \frac{a}{b} / \frac{d}{c}=\frac{a c}{b d},
$$

using only the axioms of arithmetic and your definitions.
4. Determine the real numbers x for which the following inequalities hold.
(a) $\frac{4 x-5}{x^{2}-1}<5$
(d) $\left|\frac{(x-1)(2 x-3)}{x(x-5)}\right|>1$
(b) $\frac{5}{5 x-1}<\frac{2}{2 x+1}$
(e) $\log \left(\frac{2-x}{12+4 x}\right)>0$
(c) $\frac{3 x+2}{2 x+3}<\frac{x}{x+1}$
(f) $\mathrm{e}^{x}>3^{x^{2}}$
5. Sketch the subsets

$$
\begin{aligned}
& A_{1}=\{(x, y): 3 x+2 y \leq 6, x-y \leq 2, x \leq 1\} \\
& A_{2}=\left\{(x, y):|y| \leq \frac{\sqrt{5}}{2},|y-\sqrt{5} x| \leq \sqrt{5},|y+\sqrt{5} x| \leq \sqrt{5}\right\}
\end{aligned}
$$

of the (x, y) coordinate plane.

