SAARLAND UNIVERSITY
Department of Mathematics
Prof. Dr. Mark Groves
MSc Jens Horn

Mathematics for Computer Scientists 1, WS 2018/19

Sheet 12

1. Let a, b be positive numbers and define the function $f: \mathbb{R} \rightarrow \mathbb{R}$ by the formula

$$
f(x)= \begin{cases}|x|^{a} \sin \left(\frac{1}{|x|^{b}}\right), & x \neq 0 \\ 0, & x=0\end{cases}
$$

definiert.
(a) Prove that f is differentiable at all points except 0 and compute its derivative.
(b) For which values of a and b is f also differentiable at the point 0 ? When, in this case, is its derivative $f^{\prime}: \mathbb{R} \rightarrow \mathbb{R}$
(i) continuous,
(ii) not continuous but bounded,
(iii) not bounded?
2. (a) Sketch the graph of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ mit

$$
f(x)=\frac{1}{1+|x|}+\frac{1}{1+|x-a|},
$$

where a is a positive constant, and show that the maximum value of f is

$$
\frac{2+a}{1+a}
$$

(b) Let p be a polynomial of degree n with critical points $-1,1,2,3$ and 4 . The corresponding values of p are $6,1,2,4$ and 3 and the coefficient of x^{n} is 1 . Sketch the graph of p, distinguishing between the cases n even and n odd.
3. This exercise is to be solved using the following result which is proved in lectures.

Let $f: I \rightarrow J$ be a continuous, bijective function with continuous inverse $f^{-1}: J \rightarrow I$, where I, J are open intervals. Suppose that f is differentiable at the point a.
f^{-1} is differentiable at the point b if and only if $f^{\prime}(a) \neq 0$. In this case

$$
\left(f^{-1}\right)^{\prime}(b)=\frac{1}{f^{\prime}(a)}
$$

(a) Let n be a natural number. Define

$$
g_{n}(x)=x^{\frac{1}{n}}, \quad x \in \mathbb{R},
$$

if n is odd and

$$
g_{n}(x)=x^{\frac{1}{n}}, \quad x \in[0, \infty),
$$

if n is even.
(i) Show that g_{n} is differentiable for $x \neq 0$ and $g_{n}^{\prime}(x)=\frac{1}{n} x^{\frac{1}{n}-1}$.
(ii) Deduce that

$$
\frac{\mathrm{d}}{\mathrm{~d} x} x^{q}=q x^{q-1}
$$

for all positive rational numbers q.
(iii) Deduce that

$$
\frac{\mathrm{d}}{\mathrm{~d} x} x^{q}=q x^{q-1}
$$

for all negative rational numbers q.
(b) The inverses of

$$
\begin{gathered}
\sin (\cdot):[-\pi / 2, \pi / 2] \rightarrow[-1,1], \quad \cos (\cdot):[0, \pi] \rightarrow[-1,1], \\
\tan (\cdot):(-\pi / 2, \pi / 2) \rightarrow \mathbb{R}
\end{gathered}
$$

are denoted by

$$
\begin{gathered}
\arcsin (\cdot):[-1,1] \rightarrow[-\pi / 2, \pi / 2], \quad \arccos (\cdot):[-1,1] \rightarrow[0, \pi], \\
\arctan (\cdot): \mathbb{R} \rightarrow(-\pi / 2, \pi / 2) .
\end{gathered}
$$

Sketch the graphs of these functions and show that

$$
\arcsin ^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}, \quad \arccos ^{\prime}(x)=-\frac{1}{\sqrt{1-x^{2}}}, \quad x \in(-1,1)
$$

and

$$
\arctan ^{\prime}(x)=\frac{1}{1+x^{2}}, \quad x \in \mathbb{R}
$$

