UNIVERSITÄT DES SAARLANDES

Fachrichtung 6.1 (Mathematik)

Prof. Dr. Mark Groves

MSc Jens Horn

Mathematics for Computer Scientists 1, WS 2017/18 **Examination preparation**

- 1. Find functions with the following properties and justify your answers.
 - a) $f: [\frac{1}{2}, \infty) \to [-2, 2]$ is injective and strictly monotone decreasing.
 - **b)** $f:[0,1) \to [-1,1]$ is surjective and monotone increasing.
 - c) $f: \mathbb{N} \to \mathbb{R}$ is bounded from above, but not from below.
- **2.** Which of the following functions $f: \mathbb{R} \to \mathbb{R}$ is injective, surjective, bijective? (Justify your answers.) Compute f([-1,1]) and $f^{-1}([-1,1])$ in each case.

(i)
$$f_1(x) = \begin{cases} x, & x \notin \mathbb{Z}, \\ x-1, & x \in \mathbb{Z}. \end{cases}$$

(ii)
$$f_2(x) = \begin{cases} x, & x \notin \mathbb{Z}, \\ x^2, & x \in \mathbb{Z}. \end{cases}$$

- **3.** Prove the following assertions by mathematical induction.
 - (i) $7|(3^{2n+1}+2^{n+2})$ for each natural number n.
 - (ii) $n\sqrt{n} > n + \sqrt{n}$ for each natural number $n \ge 4$.
- (iii) $\sum_{k=1}^{n} \frac{1}{(k+3)(k+4)} = \frac{n}{4(n+4)}$ for each natural number n.
- **4.** Define relations \sim_a, \ldots, \sim_e on $\mathbb R$ by

$$x \sim_a y \qquad \Leftrightarrow \qquad x \neq y,$$

$$x \sim_b y \qquad \Leftrightarrow \qquad x \leq y$$

$$x \sim_c y \qquad \Leftrightarrow \qquad x.y \ge 0$$

$$x \sim_d y \qquad \Leftrightarrow \qquad x \ge y^2$$

$$x \sim_a y$$
 \Leftrightarrow $x \neq y$,
 $x \sim_b y$ \Leftrightarrow $x \leq y$,
 $x \sim_c y$ \Leftrightarrow $x.y \geq 0$,
 $x \sim_d y$ \Leftrightarrow $x \geq y^2$,
 $x \sim_e y$ \Leftrightarrow $x + y$ is a whole number.

Are these relations reflexive, connex, symmetric, asymmetric, antisymmetric and/or transitive? Are they equivalence relations and/or partial orders?

- **5.** Find $[6533]^{-1}$ in \mathbb{Z}_{7039} , $[64]^{-1}$ in \mathbb{Z}_{135} and $[543626]^{-1}$ in $\mathbb{Z}_{5436261}$.
- **6.** Compute the solution sets of the following simultaneous equations.

(i)
$$x \equiv 1 \pmod{5}$$
,
 $x \equiv 2 \pmod{7}$,
 $x \equiv 3 \pmod{11}$.

(ii) $x \equiv 2 \pmod{3}$, $x \equiv 1 \pmod{4}$, $x \equiv 0 \pmod{7}$.

7. Find all complex solutions to the following equations.

a)
$$3z^2 + z = 0$$

e)
$$\cos z = -\frac{5}{4}$$

i)
$$z^3 = 1$$

b)
$$\cos z = 0$$

f)
$$z + \bar{z} = 1$$

j)
$$(z^2-1)^3=8z^3$$

c)
$$\sinh z = 0$$

g)
$$(1-i)z^2 = 1 + 7i$$
 k) $e^z = 1$

k)
$$e^z = 1$$

$$\mathbf{d)} \, \tan z = 1$$

h)
$$(1-i)z^2 = (1+i)z$$
 l) $e^{iz} + 4e^{-iz} = 4$

$$I) e^{iz} + 4e^{-iz} = 4$$

8. Which of the following series are convergent?

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1+e^n}{2^n}$$
,

c)
$$\sum_{n=1}^{\infty} \frac{4n^3 + 6n + 12}{\sqrt{n^8 + n^2}}$$
, e) $\sum_{n=1}^{\infty} \frac{n^3}{2^n}$,

e)
$$\sum_{n=1}^{\infty} \frac{n^3}{2^n}$$
,

b)
$$\sum_{n=1}^{\infty} \frac{2^n + 3^n}{n^2 + n^3}$$

d)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$
,

f)
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{-2n}$$
.

9. Find the radius of convergence for the following power series.

$$\mathbf{a)} \ \sum_{n=1}^{\infty} \frac{x^n}{n},$$

c)
$$\sum_{n=1}^{\infty} n! x^{n^2}$$

b)
$$\sum_{n=1}^{\infty} n^{626} x^n$$
,

d)
$$\sum_{n=1}^{\infty} \frac{5}{3n4^n} x^n$$
.

10. Compute the following limits.

a)
$$\lim_{n \to \infty} \sqrt{n^2 + 3n + 1} - n$$
,

d)
$$\lim_{x\to 1} \frac{x^2-1}{x-1}$$
,

b)
$$\lim_{n \to \infty} \frac{(\sqrt{n^5} + 2n) \cdot (\sin^2(\frac{1}{n}) + 1)}{(n+1)^2 \sqrt[3]{1 + 2n}},$$

e)
$$\lim_{x\to 1} \frac{x^3-6x^2+11x-6}{x^2-4x+3}$$
,

c)
$$\lim_{x\to 0} \frac{\log(\cos(x))}{\sin(x)}$$
,

f)
$$\lim_{x \to \infty} \left(1 + \frac{2}{x} + \frac{3}{x^2} \right)^{7x}$$
.

11. Sketch the graphs of the following functions $f: \mathbb{R} \setminus \{-1, 1, 2\} \to \mathbb{R}$.

a)
$$f(x) = x^2 - x$$
,

c)
$$f(x) = x^5 + x + 1$$
,

b)
$$f(x) = \frac{x}{x^2 - 1}$$
,

d)
$$f(x) = \frac{x^2 - 8}{(x - 2)^2}$$
.

12. Sketch the graphs of the following functions $f: \mathbb{R} \to \mathbb{R}$ and determine where these functions are differentiable.

a)
$$f(x) = \begin{cases} -x, & x \le -1, \\ x^2, & -1 < x < 1, \\ 2x - 1, & x \ge 1. \end{cases}$$

b)
$$f(x) = \begin{cases} -x - 3, & x < -1, \\ 2x, & -1 < x < 1, \\ -x + 3, & x > 1, \\ -2, & x \in \{-1, 1\}. \end{cases}$$

13. Compute the Maclaurin series of the functions given by the following formulae and find their radius of convergence.

a)
$$\frac{1}{1-x^2}$$
,

c)
$$e^{4x^2}$$
,

e)
$$\frac{1 - \cos(4x)}{2x}$$
,

b)
$$\frac{x}{1+8x^3}$$
,

d)
$$\frac{1}{2-4x}$$
,

f)
$$\frac{1 - \cos(x^2)}{x^4}$$
.

14. Define the function $f: \mathbb{R} \setminus \{\frac{2}{3}\} \to \mathbb{R}$ by

$$f(x) = \frac{1}{2 - 3x}.$$

Show that

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n}f(x) = \frac{n!\,3^n}{(2-3x)^n}$$

for $n \in \mathbb{N}$. Compute the Taylor series of f at 0 and find its radius of convergence.

15. Let the function $f: \mathbb{R} \setminus \{-\frac{9}{2}\} \to \mathbb{R}$ be defined by

$$f(x) = \frac{1}{(2x+9)^2}.$$

Show that

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n}f(x) = (-1)^n 2^n (n+1)! (2x+9)^{-(n+2)}$$

for $n \in \mathbb{N}$. Compute the Taylor series of f at -4 and find its radius of convergence.

16. Calculate

$$\frac{\mathrm{d}}{\mathrm{d}x}(\log\left(1+x\right)).$$

Compute the Taylor series of $\log(1+x)$ at 0 and find its radius of convergence.