SAARLAND UNIVERSITY Department of Mathematics Prof. Dr. Mark Groves MSc Jens Horn

Mathematics for Computer Scientists 1, WS 2017/18 Sheet 4

1. Prove the following assertions by mathematical induction.

(a)
$$\sum_{i=1}^{n} \log\left(1 + \frac{1}{i}\right) = \log(1+n)$$
 for each natural number n ;

- (b) $\prod_{i=1}^{n} (2i-1) = \frac{(2n)!}{2^n n!}$ for each natural number n;
- (c) $n^2 \leq 2^n \leq n!$ for each natural number $n \geq 4$;
- (d) $6|(2^n + 3^n 5^n)$ for each natural number n.
- **2.** (a) Let $\mathcal{P}(n)$, $n \in \mathbb{N}$ be a predicate with the following properties:
 - There exists $m \in \mathbb{N}$ such that $\mathcal{P}(1), \ldots, \mathcal{P}(m)$ are true.
 - Let k > m. P(k) is true whenever $\mathcal{P}(j)$ is true for all j < k.

Deduce from the well-ordering axiom of the natural numbers that P(n) is true for all $n \in \mathbb{N}$. (This is called **strong induction**.)

(b) The aim of 'mini-tetris' is to fill a $2 \times n$ rectangle (completely, and without overlaps) with tiles of the following type:

Let T_n be the number of ways of filling a $2 \times n$ rectangle with these tiles.

Determine T_1 und T_2 , find a formula for T_n for $n \ge 3$ as a function of T_{n-1} and T_{n-2} , and prove by strong induction that

$$T_n = \frac{1}{3} [2^{n+1} + (-1)^n].$$

3. Calculate (1552303, 233927) and find integers m and n such that

(1552303, 233927) = 1552303m + 233927n.

- **4.** Let a and b be natural numbers and d = (a, b).
 - (a) Show that d is the smallest element of the set

$$\{ma+nb:m,n\in\mathbb{Z}\}\cap\mathbb{N}.$$

[Hint: You do not need the well-ordering axiom of the natural numbers.]

(b) Suppose there are integers m and n such that ma + nb = 1. Deduce that (a, b) = 1.