SAARLAND UNIVERSITY
Department of Mathematics
Prof. Dr. Mark Groves
MSc Jens Horn

Mathematics for Computer Scientists 1, WS 2017/18 Sheet 4

1. Prove the following assertions by mathematical induction.
(a) $\sum_{i=1}^{n} \log \left(1+\frac{1}{i}\right)=\log (1+n)$ for each natural number n;
(b) $\prod_{i=1}^{n}(2 i-1)=\frac{(2 n)!}{2^{n} n!}$ for each natural number n;
(c) $n^{2} \leq 2^{n} \leq n$! for each natural number $n \geq 4$;
(d) $6 \mid\left(2^{n}+3^{n}-5^{n}\right)$ for each natural number n.
2. (a) Let $\mathcal{P}(n), n \in \mathbb{N}$ be a predicate with the following properties:

- There exists $m \in \mathbb{N}$ such that $\mathcal{P}(1), \ldots, \mathcal{P}(m)$ are true.
- Let $k>m$. $P(k)$ is true whenever $\mathcal{P}(j)$ is true for all $j<k$.

Deduce from the well-ordering axiom of the natural numbers that $P(n)$ is true for all $n \in \mathbb{N}$. (This is called strong induction.)
(b) The aim of 'mini-tetris' is to fill a $2 \times n$ rectangle (completely, and without overlaps) with tiles of the following type:

Let T_{n} be the number of ways of filling a $2 \times n$ rectangle with these tiles.
Determine T_{1} und T_{2}, find a formula for T_{n} for $n \geq 3$ as a function of T_{n-1} and T_{n-2}, and prove by strong induction that

$$
T_{n}=\frac{1}{3}\left[2^{n+1}+(-1)^{n}\right] .
$$

3. Calculate $(1552303,233927)$ and find integers m and n such that

$$
(1552303,233927)=1552303 m+233927 n .
$$

4. Let a and b be natural numbers and $d=(a, b)$.
(a) Show that d is the smallest element of the set

$$
\{m a+n b: m, n \in \mathbb{Z}\} \cap \mathbb{N} .
$$

[Hint: You do not need the well-ordering axiom of the natural numbers.]
(b) Suppose there are integers m and n such that $m a+n b=1$. Deduce that $(a, b)=1$.

