SAARLAND UNIVERSITY Department of Mathematics Prof. Dr. Mark Groves MSc Jens Horn

Mathematics for Computer Scientists 1, WS 2018/19 Sheet 3

1. The following tables show the results of the arithmetical operations in \mathbb{Z}_3 (where \oplus and \odot denote addition and multiplication modulo 3).

\oplus	[0]	[1]	[2]
[0]	[0]	[1]	[2]
[1]	[1]	[2]	[0]
[2]	[2]	[0]	[1]

\odot	[0]	[1]	[2]
[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]
[2]	[0]	[2]	[1]

- (a) Compute the corresponding tables for \mathbb{Z}_5 and \mathbb{Z}_7 .
- (b) Compute the corresponding tables for \mathbb{Z}_4 and show that $(\mathbb{Z}_4, \oplus, \odot)$ is not a field.
- **2.** Show that $\{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ is a subfield of $(\mathbb{R}, +, .)$.

3. Show that \mathbb{C} is not an ordered field with respect to the usual addition and multiplication. [Hint: Show that the assumptions 0 < i and i < 0 both lead to contradictions.]

4. Define the binary operations 'subtraction' and 'division' on a field (K, +, .). Let a, b, c, d be Elements of K with $b, d \neq 0$. Show that

$$\frac{a}{b} - \frac{c}{d} = \frac{a.d - b.c}{b.d}, \qquad \frac{a}{b} \middle/ \frac{d}{c} = \frac{a.c}{b.d},$$

using only the axioms of arithmetic and your definitions.

5. Let X be a nonempty set and \cdot an associative binary operation on X with the following properties.

- (i) The element $e \in X$ satisfies $e \cdot x = x$ for all $x \in X$.
- (ii) For each $x \in X$ there exists an element x^{-1} with $x^{-1} \cdot x = e$.

Show that $x \cdot e = x$ and $x \cdot x^{-1} = e$ for all $x \in X$.