SAARLAND UNIVERSITY
Department of Mathematics
Prof. Dr. Mark Groves
MSc Jens Horn

Mathematics for Computer Scientists 1, WS 2018/19 Sheet 3

1. The following tables show the results of the arithmetical operations in \mathbb{Z}_{3} (where \oplus and \odot denote addition and multiplication modulo 3).

\oplus	$[0]$	$[1]$	$[2]$
$[0]$	$[0]$	$[1]$	$[2]$
$[1]$	$[1]$	$[2]$	$[0]$
$[2]$	$[2]$	$[0]$	$[1]$

\odot	$[0]$	$[1]$	$[2]$
$[0]$	$[0]$	$[0]$	$[0]$
$[1]$	$[0]$	$[1]$	$[2]$
$[2]$	$[0]$	$[2]$	$[1]$

(a) Compute the corresponding tables for \mathbb{Z}_{5} and \mathbb{Z}_{7}.
(b) Compute the corresponding tables for \mathbb{Z}_{4} and show that $\left(\mathbb{Z}_{4}, \oplus, \odot\right)$ is not a field.
2. Show that $\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$ is a subfield of $(\mathbb{R},+,$.$) .$
3. Show that \mathbb{C} is not an ordered field with respect to the usual addition and multiplication. [Hint: Show that the assumptions $0<\mathrm{i}$ and $\mathrm{i}<0$ both lead to contradictions.]
4. Define the binary operations 'subtraction' and 'division' on a field ($K,+,$.$) . Let a, b, c$, d be Elements of K with $b, d \neq 0$. Show that

$$
\frac{a}{b}-\frac{c}{d}=\frac{a \cdot d-b \cdot c}{b \cdot d}, \quad \frac{a}{b} / \frac{d}{c}=\frac{a \cdot c}{b \cdot d},
$$

using only the axioms of arithmetic and your definitions.
5. Let X be a nonempty set and \cdot an associative binary operation on X with the following properties.
(i) The element $e \in X$ satisfies $e \cdot x=x$ for all $x \in X$.
(ii) For each $x \in X$ there exists an element x^{-1} with $x^{-1} \cdot x=e$.

Show that $x \cdot e=x$ and $x \cdot x^{-1}=e$ for all $x \in X$.

