SAARLAND UNIVERSITY
Department of Mathematics
Prof. Dr. Mark Groves
MSc Jens Horn

Mathematics for Computer Scientists 1, WS 2018/19 Sheet 6

1. Bob's public key is (in the notation used in lectures)

$$
n=391, \quad d=13 .
$$

(a) Eve was however easily able to determine his private key. What is it?
(b) Which word did Alice send to Bob via the message

$$
172,260,260,192,43,260,334,68 ?
$$

(c) Which message would Alice use to send the word 'INFORMATIK' to Bob?
[You should give all the steps in your calculations. Powers may be efficiently calculated in modular arithmetic using the 'square and multiply' procedure. For example:

$$
\begin{aligned}
106 & \equiv 106(\bmod 143) \\
106^{2} \equiv 11236 & \equiv 82 \quad(\bmod 143) \\
106^{4} \equiv(82)^{2} \equiv 6724 & \equiv 3 \quad(\bmod 143) \\
106^{8} \equiv(3)^{2} \equiv 9 & \equiv 9 \quad(\bmod 143),
\end{aligned}
$$

so that

$$
\left.106^{11} \equiv(106)^{8}(106)^{2} 106 \equiv 9.82 .106 \equiv 78227 \equiv 7(\bmod 143) .\right]
$$

2. Prove the following assertions by mathematical induction.
(a) $\sum_{i=1}^{n} \log \left(1+\frac{1}{i}\right)=\log (1+n)$ for each natural number n;
(b) $\prod_{i=1}^{n}(2 i-1)=\frac{(2 n)!}{2^{n} n!}$ for each natural number n;
(c) $n^{2} \leq 2^{n} \leq n$! for each natural number $n \geq 4$;
(d) $6 \mid\left(2^{n}+3^{n}-5^{n}\right)$ for each natural number n.
3. (a) Let $\mathcal{P}(n), n \in \mathbb{N}$ be a predicate with the following properties:

- There exists $m \in \mathbb{N}$ such that $\mathcal{P}(1), \ldots, \mathcal{P}(m)$ are true.
- Let $k>m$. $P(k)$ is true whenever $\mathcal{P}(j)$ is true for all $j<k$.

Deduce from the well-ordering axiom of the natural numbers that $P(n)$ is true for all $n \in \mathbb{N}$. (This is called strong induction.)
(b) The aim of 'mini-tetris' is to fill a $2 \times n$ rectangle (completely, and without overlaps) with tiles of the following type:

Let T_{n} be the number of ways of filling a $2 \times n$ rectangle with these tiles.
Determine T_{1} und T_{2}, find a formula for T_{n} for $n \geq 3$ as a function of T_{n-1} and T_{n-2}, and prove by strong induction that

$$
T_{n}=\frac{1}{3}\left[2^{n+1}+(-1)^{n}\right] .
$$

