SAARLAND UNIVERSITY

Department of Mathematics

Prof. Dr. Mark Groves

MSc Jens Horn

Mathematics for Computer Scientists 1, WS 2018/19 Sheet 6

1. Bob's public key is (in the notation used in lectures)

$$n = 391.$$
 $d = 13.$

- (a) Eve was however easily able to determine his private key. What is it?
- (b) Which word did Alice send to Bob via the message

(c) Which message would Alice use to send the word 'INFORMATIK' to Bob?

[You should give all the steps in your calculations. Powers may be efficiently calculated in modular arithmetic using the 'square and multiply' procedure. For example:

$$106 \equiv 106 \pmod{143}$$
 $106^2 \equiv 11236 \equiv 82 \pmod{143}$
 $106^4 \equiv (82)^2 \equiv 6724 \equiv 3 \pmod{143}$
 $106^8 \equiv (3)^2 \equiv 9 \equiv 9 \pmod{143}$,

so that

$$106^{11} \equiv (106)^8 (106)^2 106 \equiv 9.82.106 \equiv 78227 \equiv 7 \pmod{143}$$
.

- 2. Prove the following assertions by mathematical induction.
 - (a) $\sum_{i=1}^{n} \log \left(1 + \frac{1}{i}\right) = \log(1+n)$ for each natural number n;
 - (b) $\prod_{i=1}^{n} (2i-1) = \frac{(2n)!}{2^n n!}$ for each natural number n;
 - (c) $n^2 \le 2^n \le n!$ for each natural number $n \ge 4$;
 - (d) $6|(2^n + 3^n 5^n)$ for each natural number n.

- **3.** (a) Let $\mathcal{P}(n)$, $n \in \mathbb{N}$ be a predicate with the following properties:
 - There exists $m \in \mathbb{N}$ such that $\mathcal{P}(1), \ldots, \mathcal{P}(m)$ are true.
 - Let k > m. P(k) is true whenever $\mathcal{P}(j)$ is true for all j < k.

Deduce from the well-ordering axiom of the natural numbers that P(n) is true for all $n \in \mathbb{N}$. (This is called **strong induction**.)

(b) The aim of 'mini-tetris' is to fill a $2 \times n$ rectangle (completely, and without overlaps) with tiles of the following type:

Let T_n be the number of ways of filling a $2 \times n$ rectangle with these tiles.

Determine T_1 und T_2 , find a formula for T_n for $n \ge 3$ as a function of T_{n-1} and T_{n-2} , and prove by strong induction that

$$T_n = \frac{1}{3}[2^{n+1} + (-1)^n].$$