SAARLAND UNIVERSITY

Department of Mathematics
Prof. Dr. Mark Groves
MSc Jens Horn
Mathematics for Computer Scientists 1, WS 2018/19 Sheet 11

1. (a) How many n-digit natural numbers without the digit 9 are there?
(b) Prove that the sum of the reciprocal values of the n-digit natural numbers without the digit 9 is less than or equal to $8\left(\frac{9}{10}\right)^{n-1}$.
(c) Prove that the series obtained from the harmonic series by removing those summands with the digit 9 in their denominator is convergent.
2. Give rigorous formulations of the following statements.
(i) $f(x) \rightarrow \infty$ for $x \rightarrow \infty$
(iv) $f(x) \rightarrow-\infty$ for $x \rightarrow-\infty$
(ii) $f(x) \rightarrow-\infty$ for $x \rightarrow \infty$
(v) $f(x) \rightarrow \infty$ for $x \rightarrow a$
(iii) $f(x) \rightarrow \infty$ for $x \rightarrow-\infty$
(vi) $f(x) \rightarrow-\infty$ for $x \rightarrow a$
3. (a) Let $\lim _{x \rightarrow a} f(x)=\ell$. Prove that $\left\{f_{n}\right\}$ converges to ℓ for every sequence $\left\{x_{n}\right\}$ with $x_{n} \neq a$ which converges to a.
(b) Prove the converse to (a) by contradiction: suppose that $\left\{f\left(x_{n}\right)\right\}$ converges to ℓ for every sequence $\left\{x_{n}\right\}$ with $x_{n} \neq a$ which converges to a, set $\delta=1 / n, n=1,2,3, \ldots$ in the rigorous formulation of the statement ' $\lim _{x \rightarrow a} f(x) \neq \ell$ ' and find a sequence $\left\{x_{n}\right\}$ with $x_{n} \neq a$ and $x_{n} \rightarrow a$ but $f\left(x_{n}\right) \nrightarrow \ell$ as $n \rightarrow \infty$.
(c) Suppose that the functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous. Prove that $f \circ g: \mathbb{R} \rightarrow \mathbb{R}$ is also continuous.
(d) Suppose that the functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous and $f(q)=g(q)$ for all rational numbers q. Prove that $f(x)=g(x)$ for all real numbers x.
4. This exercise is to be solved using the intermediate-value theorem.
(i) Let $\alpha<\beta$. Show that the equation

$$
\frac{x^{2}+1}{x-\alpha}+\frac{x^{6}+1}{x-\beta}=0
$$

has at least one solution $x_{0} \in(\alpha, \beta)$.
(ii) Show that the equation

$$
2^{x}=4 x
$$

has at least one solution other than $x=4$.

