SAARLAND UNIVERSITY Department of Mathematics Prof. Dr. Mark Groves MSc Jens Horn

Mathematics for Computer Scientists 1, WS 2018/19 Sheet 11

- 1. (a) How many *n*-digit natural numbers without the digit 9 are there?
 - (b) Prove that the sum of the reciprocal values of the *n*-digit natural numbers without the digit 9 is less than or equal to $8(\frac{9}{10})^{n-1}$.
 - (c) Prove that the series obtained from the harmonic series by removing those summands with the digit 9 in their denominator is convergent.
- 2. Give rigorous formulations of the following statements.

(i) $f(x) \to \infty$ for $x \to \infty$	(iv) $f(x) \to -\infty$ for $x \to -\infty$
(ii) $f(x) \to -\infty$ for $x \to \infty$	(v) $f(x) \to \infty$ for $x \to a$
(iii) $f(x) \to \infty$ for $x \to -\infty$	(vi) $f(x) \to -\infty$ for $x \to a$

- **3.** (a) Let $\lim_{x\to a} f(x) = \ell$. Prove that $\{f_n\}$ converges to ℓ for every sequence $\{x_n\}$ with $x_n \neq a$ which converges to a.
 - (b) Prove the converse to (a) by contradiction: suppose that $\{f(x_n)\}$ converges to ℓ for every sequence $\{x_n\}$ with $x_n \neq a$ which converges to a, set $\delta = 1/n$, n = 1, 2, 3, ... in the rigorous formulation of the statement ' $\lim_{x\to a} f(x) \neq \ell$ ' and find a sequence $\{x_n\}$ with $x_n \neq a$ and $x_n \to a$ but $f(x_n) \neq \ell$ as $n \to \infty$.
 - (c) Suppose that the functions $f, g : \mathbb{R} \to \mathbb{R}$ are continuous. Prove that $f \circ g : \mathbb{R} \to \mathbb{R}$ is also continuous.
 - (d) Suppose that the functions $f, g : \mathbb{R} \to \mathbb{R}$ are continuous and f(q) = g(q) for all rational numbers q. Prove that f(x) = g(x) for all real numbers x.
- 4. This exercise is to be solved using the intermediate-value theorem.
 - (i) Let $\alpha < \beta$. Show that the equation

$$\frac{x^2 + 1}{x - \alpha} + \frac{x^6 + 1}{x - \beta} = 0$$

has at least one solution $x_0 \in (\alpha, \beta)$.

(ii) Show that the equation

 $2^x = 4x$

has at least one solution other than x = 4.