SAARLAND UNIVERSITY

Department of Mathematics
Prof. Dr. Mark Groves
MSc Jens Horn

Mathematics for Computer Scientists 1, WS 2018/19 Sheet 7

1. Prove the following results using the pigeon-hole principle.
(a) In every collection of 7 integers there are at least two whose difference is divisible by 6.
(b) Let n be a natural number. In every collection of $n^{2}+1$ points $P_{1}, \ldots, P_{n^{2}+1}$ in a square of side length n there are at least two points separated by a distance of no more than $\sqrt{2}$.
(c) In every collection of 51 integers between 1 and 100 there are at least two whose sum is 101 .
2. Prove that the set of all prime numbers is infinite. [Hint: Modify the proof that the set \mathbb{N} is infinite. You may assume that a natural number $m \geq 2$ is either a prime number or divisible by a prime number.]
3. (a) Prove that the set of all finite subsets of \mathbb{N} is countably infinite. [Hint: Arrange the subsets according to the sum of their elements.]
(b) Let $A_{1}, A_{2}, A_{3}, \ldots$ be countably infinite sets. Prove that $\bigcup_{i=1}^{\infty} A_{i}$ is also countably infinite. [Hint: Denote the elements of A_{i} by $\left\{a_{i, 1}, a_{i, 2}, a_{i, 3}, a_{i, 4}, \ldots\right\}$ and apply a diagonal argument to count the elements $\left\{a_{i, j}\right\}_{i, j=1,2, \ldots}$ of $\bigcup_{i=1}^{\infty} A_{i}$.]
4. Determine the infima and suprema of the sets

$$
\begin{aligned}
& M_{0}=\{x \in \mathbb{Q}: \sqrt{3}<x \leq \sqrt{5}\}, \\
& M_{1}=\left\{\frac{1}{m}+\frac{1}{n}: m, n \in \mathbb{Z} \backslash\{0\}\right\}, \\
& M_{2}=\left\{\frac{x}{x+1}: x \in \mathbb{R}, x>0\right\}, \\
& M_{3}=\left\{\frac{x+1}{x}: x \in \mathbb{R}, x>0\right\}
\end{aligned}
$$

and decide whether their minima and maxima exist.

