UNIVERSITÄT DES SAARLANDES Fachrichtung 6.1 (Mathematik) Prof. Dr. Mark Groves MSc Jens Horn

Mathematics for Computer Scientists 1, WS 2018/19 Examination preparation

- **1.** Find functions with the following properties and justify your answers.
 - a) $f: [\frac{1}{2}, \infty) \to [-2, 2]$ is injective and strictly monotone decreasing.
 - **b)** $f:[0,1) \rightarrow [-1,1]$ is surjective and monotone increasing.
 - c) $f : \mathbb{N} \to \mathbb{R}$ is bounded from above, but not from below.

2. Which of the following functions $f : \mathbb{R} \to \mathbb{R}$ is injective, surjective, bijective? (Justify your answers.) Compute f([-1,1]) and $f^{-1}([-1,1])$ in each case.

- (i) $f_1(x) = \begin{cases} x, & x \notin \mathbb{Z}, \\ x-1, & x \in \mathbb{Z}. \end{cases}$ (ii) $f_2(x) = \begin{cases} x, & x \notin \mathbb{Z}, \\ x^2, & x \in \mathbb{Z}. \end{cases}$
- **3.** Prove the following assertions by mathematical induction.
 - (i) $7|(3^{2n+1}+2^{n+2})$ for each natural number *n*.
 - (ii) $n\sqrt{n} > n + \sqrt{n}$ for each natural number $n \ge 4$.
- (iii) $\sum_{k=1}^{n} \frac{1}{(k+3)(k+4)} = \frac{n}{4(n+4)}$ for each natural number *n*.
- **4.** Define relations \sim_a, \ldots, \sim_e on \mathbb{R} by

Are these relations reflexive, connex, symmetric, asymmetric, antisymmetric and/or transitive? Are they equivalence relations and/or partial orders?

- **5.** Find $[6533]^{-1}$ in \mathbb{Z}_{7039} , $[64]^{-1}$ in \mathbb{Z}_{135} and $[543626]^{-1}$ in $\mathbb{Z}_{5436261}$.
- 6. Compute the solution sets of the following simultaneous equations.
 - (i) $x \equiv 1 \pmod{5}$, (ii) $x \equiv 2 \pmod{3}$, $x \equiv 2 \pmod{7}$, $x \equiv 1 \pmod{4}$, $x \equiv 3 \pmod{11}$. $x \equiv 0 \pmod{7}$.
- **7.** Find all complex solutions to the following equations.
 - a) $3z^2 + z = 0$ e) $\cos z = -\frac{5}{4}$ i) $z^3 = 1$ b) $\cos z = 0$ f) $z + \overline{z} = 1$ j) $(z^2 1)^3 = 8z^3$ c) $\sinh z = 0$ g) $(1 i)z^2 = 1 + 7i$ k) $e^z = 1$ d) $\tan z = 1$ h) $(1 i)z^2 = (1 + i)z$ l) $e^{iz} + 4e^{-iz} = 4$
- 8. Which of the following series are convergent?

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1+e^n}{2^n}$$
, c) $\sum_{n=1}^{\infty} \frac{4n^3+6n+12}{\sqrt{n^8+n^2}}$, e) $\sum_{n=1}^{\infty} \frac{n^3}{2^n}$,
b) $\sum_{n=1}^{\infty} \frac{2^n+3^n}{n^2+n^3}$ d) $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$, f) $\sum_{n=1}^{\infty} \left(1+\frac{1}{n}\right)^{-2n}$.

9. Find the radius of convergence for the following power series.

a)
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$
,
b) $\sum_{n=1}^{\infty} n^{626} x^n$,
c) $\sum_{n=1}^{\infty} n! x^{n^2}$,
d) $\sum_{n=1}^{\infty} \frac{5}{3n4^n} x^n$.

10. Compute the following limits.

a)
$$\lim_{n \to \infty} \sqrt{n^2 + 3n + 1} - n$$
,
b) $\lim_{n \to \infty} \frac{(\sqrt{n^5} + 2n) \cdot (\sin^2(\frac{1}{n}) + 1)}{(n+1)^2 \sqrt[3]{1+2n}}$,
c) $\lim_{x \to 0} \frac{\log(\cos(x))}{\sin(x)}$,

d)
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1},$$

e)
$$\lim_{x \to 1} \frac{x^3 - 6x^2 + 11x - 6}{x^2 - 4x + 3},$$

f)
$$\lim_{x \to \infty} \left(1 + \frac{2}{x} + \frac{3}{x^2} \right)^{tx}$$
.

11. Sketch the graphs of the following functions $f : \mathbb{R} \setminus \{-1, 1, 2\} \to \mathbb{R}$.

a)
$$f(x) = x^2 - x$$
,
b) $f(x) = \frac{x}{x^2 - 1}$,
c) $f(x) = x^5 + x + 1$,
d) $f(x) = \frac{x^2 - 8}{(x - 2)^2}$.

12. Sketch the graphs of the following functions $f : \mathbb{R} \to \mathbb{R}$ and determine where these functions are differentiable.

a)
$$f(x) = \begin{cases} -x, & x \le -1, \\ x^2, & -1 < x < 1, \\ 2x - 1, & x \ge 1. \end{cases}$$

b)
$$f(x) = \begin{cases} -x - 3, & x < -1, \\ 2x, & -1 < x < 1, \\ -x + 3, & x > 1, \\ -2, & x \in \{-1, 1\}. \end{cases}$$

13. Compute the Maclaurin series of the functions given by the following formulae and find their radius of convergence.

a)
$$\frac{1}{1-x^2}$$
, c) e^{4x^2} , e) $\frac{1-\cos(4x)}{2x}$,
b) $\frac{x}{1+8x^3}$, d) $\frac{1}{2-4x}$, f) $\frac{1-\cos(x^2)}{x^4}$.

14. Define the function $f: \mathbb{R} \setminus \{\frac{2}{3}\} \to \mathbb{R}$ by

$$f(x) = \frac{1}{2 - 3x}.$$

Show that

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n}f(x) = \frac{n!\,3^n}{(2-3x)^{n+1}}$$

for $n \in \mathbb{N}$. Compute the Taylor series of f at 0 and find its radius of convergence.

15. Let the function $f: \mathbb{R} \setminus \{-\frac{9}{2}\} \to \mathbb{R}$ be defined by

$$f(x) = \frac{1}{(2x+9)^2}.$$

Show that

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n}f(x) = (-1)^n 2^n (n+1)! (2x+9)^{-(n+2)}$$

for $n \in \mathbb{N}$.Compute the Taylor series of f at -4 and find its radius of convergence.

16. Calculate

$$\frac{\mathrm{d}}{\mathrm{d}x}(\log\left(1+x\right)).$$

Compute the Taylor series of $\log(1+x)$ at 0 and find its radius of convergence.