UNIVERSITÄT DES SAARLANDES

Fachrichtung 6.1 (Mathematik)

Prof. Dr. Mark Groves
MSc Jens Horn
Mathematics for Computer Scientists 1, WS 2018/19
Examination preparation

1. Find functions with the following properties and justify your answers.
a) $f:\left[\frac{1}{2}, \infty\right) \rightarrow[-2,2]$ is injective and strictly monotone decreasing.
b) $f:[0,1) \rightarrow[-1,1]$ is surjective and monotone increasing.
c) $f: \mathbb{N} \rightarrow \mathbb{R}$ is bounded from above, but not from below.
2. Which of the following functions $f: \mathbb{R} \rightarrow \mathbb{R}$ is injective, surjective, bijective? (Justify your answers.) Compute $f([-1,1])$ and $f^{-1}([-1,1])$ in each case.
(i) $f_{1}(x)= \begin{cases}x, & x \notin \mathbb{Z}, \\ x-1, & x \in \mathbb{Z} .\end{cases}$
(ii) $f_{2}(x)= \begin{cases}x, & x \notin \mathbb{Z}, \\ x^{2}, & x \in \mathbb{Z} .\end{cases}$
3. Prove the following assertions by mathematical induction.
(i) $7 \mid\left(3^{2 n+1}+2^{n+2}\right)$ for each natural number n.
(ii) $n \sqrt{n}>n+\sqrt{n}$ for each natural number $n \geq 4$.
(iii) $\sum_{k=1}^{n} \frac{1}{(k+3)(k+4)}=\frac{n}{4(n+4)}$ for each natural number n.
4. Define relations $\sim_{a}, \ldots, \sim_{e}$ on \mathbb{R} by

$$
\begin{array}{lll}
x \sim_{a} y & \Leftrightarrow & x \neq y, \\
x \sim_{b} y & \Leftrightarrow & x \leq y, \\
x \sim_{c} y & \Leftrightarrow & x \cdot y \geq 0, \\
x \sim_{d} y & \Leftrightarrow & x \geq y^{2}, \\
x \sim_{e} y & \Leftrightarrow & x+y \text { is a whole number. }
\end{array}
$$

Are these relations reflexive, connex, symmetric, asymmetric, antisymmetric and/or transitive? Are they equivalence relations and/or partial orders?
5. Find $[6533]^{-1}$ in $\mathbb{Z}_{7039},[64]^{-1}$ in \mathbb{Z}_{135} and $[543626]^{-1}$ in $\mathbb{Z}_{5436261}$.
6. Compute the solution sets of the following simultaneous equations.
(i) $\quad x \equiv 1(\bmod 5)$,
$x \equiv 2(\bmod 7)$,
$x \equiv 3(\bmod 11)$.
(ii) $\begin{aligned} \quad & x \equiv 2(\bmod 3), \\ & x \equiv 1(\bmod 4), \\ & x \equiv 0(\bmod 7) .\end{aligned}$
7. Find all complex solutions to the following equations.
a) $3 z^{2}+z=0$
b) $\cos z=0$
c) $\sinh z=0$
d) $\tan z=1$
e) $\cos z=-\frac{5}{4}$
f) $z+\bar{z}=1$
g) $(1-\mathrm{i}) z^{2}=1+7 \mathrm{i}$
h) $(1-\mathrm{i}) z^{2}=(1+\mathrm{i}) z$
i) $z^{3}=1$
j) $\left(z^{2}-1\right)^{3}=8 z^{3}$
k) $\mathrm{e}^{z}=1$
I) $\mathrm{e}^{\mathrm{i} z}+4 \mathrm{e}^{-\mathrm{i} z}=4$
8. Which of the following series are convergent?
a) $\sum_{n=1}^{\infty}(-1)^{n} \frac{1+\mathrm{e}^{n}}{2^{n}}$,
c) $\sum_{n=1}^{\infty} \frac{4 n^{3}+6 n+12}{\sqrt{n^{8}+n^{2}}}$,
е) $\sum_{n=1}^{\infty} \frac{n^{3}}{2^{n}}$,
b) $\sum_{n=1}^{\infty} \frac{2^{n}+3^{n}}{n^{2}+n^{3}}$
d) $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}$,
f) $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{-2 n}$.
9. Find the radius of convergence for the following power series.
а) $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$,
c) $\sum_{n=1}^{\infty} n!x^{n^{2}}$,
b) $\sum_{n=1}^{\infty} n^{626} x^{n}$,
d) $\sum_{n=1}^{\infty} \frac{5}{3 n 4^{n}} x^{n}$.
10. Compute the following limits.
a) $\lim _{n \rightarrow \infty} \sqrt{n^{2}+3 n+1}-n$,
b) $\lim _{n \rightarrow \infty} \frac{\left(\sqrt{n^{5}}+2 n\right) \cdot\left(\sin ^{2}\left(\frac{1}{n}\right)+1\right)}{(n+1)^{2} \sqrt[3]{1+2 n}}$,
c) $\lim _{x \rightarrow 0} \frac{\log (\cos (x))}{\sin (x)}$,
d) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$,
e) $\lim _{x \rightarrow 1} \frac{x^{3}-6 x^{2}+11 x-6}{x^{2}-4 x+3}$,
f) $\lim _{x \rightarrow \infty}\left(1+\frac{2}{x}+\frac{3}{x^{2}}\right)^{7 x}$.
11. Sketch the graphs of the following functions $f: \mathbb{R} \backslash\{-1,1,2\} \rightarrow \mathbb{R}$.
a) $f(x)=x^{2}-x$,
b) $f(x)=\frac{x}{x^{2}-1}$,
c) $f(x)=x^{5}+x+1$,
d) $f(x)=\frac{x^{2}-8}{(x-2)^{2}}$.
12. Sketch the graphs of the following functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and determine where these functions are differentiable.
a) $f(x)= \begin{cases}-x, & x \leq-1, \\ x^{2}, & -1<x<1, \\ 2 x-1, & x \geq 1 .\end{cases}$
b) $f(x)= \begin{cases}-x-3, & x<-1, \\ 2 x, & -1<x<1, \\ -x+3, & x>1, \\ -2, & x \in\{-1,1\} .\end{cases}$
13. Compute the Maclaurin series of the functions given by the following formulae and find their radius of convergence.
a) $\frac{1}{1-x^{2}}$,
b) $\frac{x}{1+8 x^{3}}$,
c) $\mathrm{e}^{4 x^{2}}$,
d) $\frac{1}{2-4 x}$,
e) $\frac{1-\cos (4 x)}{2 x}$,
f) $\frac{1-\cos \left(x^{2}\right)}{x^{4}}$.
14. Define the function $f: \mathbb{R} \backslash\left\{\frac{2}{3}\right\} \rightarrow \mathbb{R}$ by

$$
f(x)=\frac{1}{2-3 x} .
$$

Show that

$$
\frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}} f(x)=\frac{n!3^{n}}{(2-3 x)^{n+1}}
$$

for $n \in \mathbb{N}$. Compute the Taylor series of f at 0 and find its radius of convergence.
15. Let the function $f: \mathbb{R} \backslash\left\{-\frac{9}{2}\right\} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\frac{1}{(2 x+9)^{2}} .
$$

Show that

$$
\frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}} f(x)=(-1)^{n} 2^{n}(n+1)!(2 x+9)^{-(n+2)}
$$

for $n \in \mathbb{N}$. Compute the Taylor series of f at -4 and find its radius of convergence.
16. Calculate

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(\log (1+x))
$$

Compute the Taylor series of $\log (1+x)$ at 0 and find its radius of convergence.

