SAARLAND UNIVERSITY
Department of Mathematics
Prof. Dr. Mark Groves
MSc Jens Horn

Mathematics for Computer Scientists 2, SS 2018
 Sheet 7

1. Let

$$
\begin{array}{lll}
M_{1}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), & M_{2}=\left(\begin{array}{lll}
2 & -1 & 3
\end{array}\right), & M_{3}=\left(\begin{array}{cc}
4 & 2 \\
1 & 3 \\
-1 & 1
\end{array}\right) \\
M_{4}=\left(\begin{array}{ll}
4 & 1 \\
2 & 3
\end{array}\right), & M_{5}=\left(\begin{array}{ccc}
2 & -1 & 1 \\
3 & 1 & -1
\end{array}\right), & M_{6}=\left(\begin{array}{ccc}
1 & 2 & 1 \\
2 & 3 & 2 \\
3 & 4 & 3
\end{array}\right) .
\end{array}
$$

Compute the defined products $M_{i} M_{j}$ for $i, j=1, \ldots, 6$.
2. (a) Let $\mathcal{B}_{3}, \mathcal{B}_{2}$ be the usual bases for \mathbb{R}^{3} and \mathbb{R}^{2},

$$
\mathcal{B}_{3}^{\prime}=\left\{\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\}, \quad \mathcal{B}_{2}^{\prime}=\left\{\binom{1}{1},\binom{1}{0}\right\}
$$

be further bases for \mathbb{R}^{3} and \mathbb{R}^{2}, and $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be linear transformations with

$$
M_{\mathcal{B}_{2}}^{\mathcal{B}_{3}}(T)=\left(\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8
\end{array}\right), \quad M_{\mathcal{B}_{3}^{\prime}}^{\mathcal{B}_{2}^{\prime}}(S)=\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right) .
$$

Compute $M_{\mathcal{B}_{2}^{\prime}}^{\mathcal{B}_{3}^{\prime}}(T)$ and $M_{\mathcal{B}_{3}}^{\mathcal{B}_{2}}(S)$.
[Hint: $B_{\mathcal{B}_{3}}^{\mathcal{B}_{3}^{\prime}}$ and $B_{\mathcal{B}_{2}^{\prime}}^{\mathcal{K}_{2}}$ are computed in the example on pages $83-84$ in the lecture notes.]
(b) Let $\mathcal{B}=\left\{E_{11}, E_{12}, E_{21}, E_{22}\right\}$ be the usual basis for $\mathbb{R}^{2 \times 2}$,

$$
\mathcal{B}^{\prime}=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

be a further basis for $\mathbb{R}^{2 \times 2}$ and $T: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$ be the linear transformation with

$$
M_{\mathcal{B}}^{\mathcal{B}}(T)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right) .
$$

Compute $M_{\mathcal{B}^{\prime}}^{\mathcal{B}^{\prime}}(T)$.
3. Let $\mathcal{A}=\left\{x^{2}, x^{2}+1, x-1\right\}$ and $\mathcal{B}=\left\{x, 1-x, x^{2}\right\}$ be bases for $\mathcal{P}_{2}(\mathbb{R})$.
(a) Compute $M_{\mathcal{B}}^{\mathcal{A}}$ and $M_{\mathcal{A}}^{\mathcal{B}}$.
(b) Find a basis \mathcal{C} for $\mathcal{P}_{2}(\mathbb{R})$ such that $M_{\mathcal{B}}^{\mathcal{C}}=M_{\mathcal{A}}^{\mathcal{B}}$.
4. Let K be a field, $A \in K^{m \times n}$ and $B \in K^{n \times p}$.
(a)Prove that $(A B)^{\mathrm{T}}=B^{\mathrm{T}} A^{\mathrm{T}}$.
[Hint: Using the remark on page 86 of the lecture notes, one can write down formulae for $\mathbf{c}_{j}^{A B}$ and $\mathbf{r}_{j}^{B^{\mathrm{T}} A^{\mathrm{T}}}$.]
(b) Show that

$$
\text { column } \operatorname{rank} A B \leq \text { column } \operatorname{rank} A \quad \operatorname{row} \operatorname{rank} A B \leq \operatorname{row} \operatorname{rank} B
$$ and deduce that

$$
\operatorname{rank} A B \leq \min (\operatorname{rank} A, \operatorname{rank} B)
$$

[Hint: Read the remark on page 86 of the lecture notes.]

