SAARLAND UNIVERSITY Department of Mathematics Prof. Dr. Mark Groves MSc Jens Horn

Mathematics for Computer Scientists 2, SS 2018 Sheet 6

- 1. Which of the following transformations are linear?
- (i) $\mathbb{R}^{2} \to \mathbb{R}$, $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto x + 2y$ (v) $\mathbb{R}^{2} \to \mathbb{R}^{2}$, $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x+1 \\ y-1 \end{pmatrix}$ (ii) $\mathbb{R}^{2} \to \mathbb{R}$, $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto x + y^{2}$ (vi) $\mathbb{R}^{2} \to \mathbb{R}^{2}$, $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x-y \\ x+2y \end{pmatrix}$ (iii) $\mathbb{R}^{2} \to \mathbb{R}$, $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto xy$ (vii) $\mathcal{P}_{n}(\mathbb{R}) \to \mathbb{R}$, $p(x) \mapsto p(1)$ (iv) $\mathbb{C} \to \mathbb{C}$, $z \mapsto \overline{z}$ (viii) $\mathcal{P}_{n}(\mathbb{R}) \to \mathcal{P}_{n+2}(\mathbb{R})$, $p(x) \mapsto x^{2}p(x)$
- **2.** (a) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by the formula

$$T\left(\begin{array}{c}x\\y\\z\end{array}\right) = \left(\begin{array}{c}x-y\\x+2y-z\\2x+y+z\end{array}\right).$$

Find the matrix of T with respect to the usual basis for \mathbb{R}^3 .

(b) Let $n \in \mathbb{N}$ and $T : \mathcal{P}_n(\mathbb{R}) \to \mathcal{P}_n(\mathbb{R})$ be the linear transformation defined by

$$(T(p))(x) = p(x+1).$$

Find the matrix of T with respect to the usual basis for $\mathcal{P}_n(\mathbb{R})$.

(c) Let $T: \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$ be the linear transformation defined by the formula

$$T\left(\begin{array}{cc}a&b\\c&d\end{array}\right) = \left(\begin{array}{cc}a&2b\\3c&4d\end{array}\right).$$

Find the matrix of T with respect to the usual basis for $\mathbb{R}^{2\times 2}$.

3. The matrix of the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ with respect to the usual basis for \mathbb{R}^3 is

$$A = \left(\begin{array}{rrr} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right).$$

Find the matrix of T with respect to the basis

$$\left\{ \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} -2\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\1 \end{pmatrix} \right\}$$

for \mathbb{R}^3 .

[Hint: Use the matrix A to find a formula for $T\begin{pmatrix} x\\ y\\ z \end{pmatrix}$.]

4. (a) Let U, V, W be vector spaces over a field K and $S : U \to V, T : V \to W$ be isomorphisms. Prove that $S^{-1} : V \to U$ and $T \circ S : U \to W$ are also isomorphisms.

(b) Let M be the set of all vector spaces over a field K. Prove that the formula

$$V \sim W \qquad \Leftrightarrow \qquad V \cong W$$

defines an equivalence relation on M.

(c) Let V and W be two finite-dimensional, isomorphic vector spaces over a field K. Prove that $\dim V = \dim W$.

[Hint: Let $\{e_1, \ldots, e_n\}$ be a basis for V and $T: V \to W$ be an isomorphism. Prove that $\{T(e_1), \ldots, T(e_n)\}$ is a basis for W.]