SAARLAND UNIVERSITY

Department of Mathematics
Prof. Dr. Mark Groves
MSc Jens Horn

Mathematics for Computer Scientists 2, SS 2018 Sheet 6

1. Which of the following transformations are linear?
(i) $\mathbb{R}^{2} \rightarrow \mathbb{R}, \quad\binom{x}{y} \mapsto x+2 y$
(v) $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad\binom{x}{y} \mapsto\binom{x+1}{y-1}$
(ii) $\mathbb{R}^{2} \rightarrow \mathbb{R}, \quad\binom{x}{y} \mapsto x+y^{2}$
(vi) $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad\binom{x}{y} \mapsto\binom{x-y}{x+2 y}$
(iii) $\mathbb{R}^{2} \rightarrow \mathbb{R}, \quad\binom{x}{y} \mapsto x y$
(vii) $\mathcal{P}_{n}(\mathbb{R}) \rightarrow \mathbb{R}, \quad p(x) \mapsto p(1)$
(iv) $\mathbb{C} \rightarrow \mathbb{C}, \quad z \mapsto \bar{z}$
(viii) $\mathcal{P}_{n}(\mathbb{R}) \rightarrow \mathcal{P}_{n+2}(\mathbb{R}), \quad p(x) \mapsto x^{2} p(x)$
2. (a) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by the formula

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
x-y \\
x+2 y-z \\
2 x+y+z
\end{array}\right) .
$$

Find the matrix of T with respect to the usual basis for \mathbb{R}^{3}.
(b) Let $n \in \mathbb{N}$ and $T: \mathcal{P}_{n}(\mathbb{R}) \rightarrow \mathcal{P}_{n}(\mathbb{R})$ be the linear transformation defined by

$$
(T(p))(x)=p(x+1) .
$$

Find the matrix of T with respect to the usual basis for $\mathcal{P}_{n}(\mathbb{R})$.
(c) Let $T: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$ be the linear transformation defined by the formula

$$
T\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
a & 2 b \\
3 c & 4 d
\end{array}\right) .
$$

Find the matrix of T with respect to the usual basis for $\mathbb{R}^{2 \times 2}$.
3. The matrix of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with respect to the usual basis for \mathbb{R}^{3} is

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

Find the matrix of T with respect to the basis

$$
\left\{\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)\right\}
$$

for \mathbb{R}^{3}.
[Hint: Use the matrix A to find a formula for $T\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.]
4. (a) Let U, V, W be vector spaces over a field K and $S: U \rightarrow V, T: V \rightarrow W$ be isomorphisms. Prove that $S^{-1}: V \rightarrow U$ and $T \circ S: U \rightarrow W$ are also isomorphisms.
(b) Let M be the set of all vector spaces over a field K. Prove that the formula

$$
V \sim W \quad \Leftrightarrow \quad V \cong W
$$

defines an equivalence relation on M.
(c) Let V and W be two finite-dimensional, isomorphic vector spaces over a field K. Prove that $\operatorname{dim} V=\operatorname{dim} W$.
[Hint: Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis for V and $T: V \rightarrow W$ be an isomorphism. Prove that $\left\{T\left(e_{1}\right), \ldots, T\left(e_{n}\right)\right\}$ is a basis for W.]

