SAARLAND UNIVERSITY

Department of Mathematics
Prof. Dr. Mark Groves
MSc Jens Horn

Mathematics for Computer Scientists 2, SS 2018 Sheet 12

1. Show that

$$
S=\left\{\left(\begin{array}{c}
1 \\
-1 \\
\mathrm{i}
\end{array}\right),\left(\begin{array}{l}
\mathrm{i} \\
1 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\}
$$

is a basis for \mathbb{C}^{3}. Apply the Gram-Schmidt procedure to S to find an orthonormal basis for \mathbb{C}^{3}.
2. Show that the matrix

$$
A=\frac{1}{9}\left(\begin{array}{ccc}
-7 & 4 & 4 \\
4 & -1 & 8 \\
4 & 8 & -1
\end{array}\right)
$$

lies in $\mathrm{SO}(3)$. Determine the axis and angle of the rotation represented by A.
3. Let M be the $n \times n$ matrix whose entries are all 1 . Determine the rank and signature of the quadratic form $\mathbf{x}^{\mathrm{T}} M \mathbf{x}$.
[Hint: convert M into diagonal form by symmetric elementary operations.]
4. Sketch the conic sections with equations
(i) $6 x^{2}+24 x y-y^{2}-12 x+26 y+11=0$,
(ii) $52 x^{2}-72 x y+73 y^{2}+40 x+30 y-75=0$.

