## SAARLAND UNIVERSITY

Department of Mathematics
Prof. Dr. Mark Groves
MSc Jens Horn

## Mathematics for Computer Scientists 2, SS 2018 Sheet 8

1. Determine for which values of $\lambda \in \mathbb{R}$ the real matrix

$$
A_{\lambda}=\left(\begin{array}{cccc}
1 & \lambda & 0 & 0 \\
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \lambda & 1
\end{array}\right)
$$

is invertible, and compute the inverse matrix $A_{\lambda}^{-1}$ for these values of $\lambda$.
2. Let

$$
B=\left(\begin{array}{lllll}
2 & 1 & 1 & 1 & 2 \\
3 & 2 & 1 & 1 & 2 \\
4 & 2 & 2 & 3 & 5 \\
2 & 1 & 1 & 2 & 3
\end{array}\right) \in \mathbb{R}^{4 \times 5}
$$

and $r=\operatorname{Rang} B$. Find matrices $T \in \mathrm{GL}(4, \mathbb{R})$ and $S \in \mathrm{GL}(5, \mathbb{R})$ such that

$$
T^{-1} B S=\left(\begin{array}{rr}
I_{r} & 0 \\
0 & 0
\end{array}\right) .
$$

[Hint: First convert $B$ into echelon form using elementary row operations, then convert the resulting matrix into the form (*) using elemenary column operations. The matrix $S$ is obtained by applying the column operations to $I_{5}$ in the same order, while the matrix $T$ is obtained by applying the row operations to $I_{4}$ in reverse order.]
3. Let $p$ be a prime number. Determine whether the matrix

$$
C=\left(\begin{array}{ccc}
13 & 7 & 6 \\
-7 & 1 & 1 \\
3 & 8 & 7
\end{array}\right) \in \mathbb{Z}_{p}^{3 \times 3}
$$

is invertible in the cases $p=2, p=3$ and $p=5$, and compute $C^{-1}$ if it exists.
4. Construct a $4 \times 4$ real $D$ such that

$$
\text { ker } D=\left\langle\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)\right\rangle, \quad \operatorname{Im} D=\left\langle\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right)\right\rangle
$$

[Hint: $D=\left(D \mathbf{e}_{1}\left|D \mathbf{e}_{2}\right| D \mathbf{e}_{3} \mid D \mathbf{e}_{4}\right)$ and $\operatorname{Im} D=\left\langle D \mathbf{e}_{1}, D \mathbf{e}_{2}, D \mathbf{e}_{3}, D \mathbf{e}_{4}\right\rangle$.]

