SAARLAND UNIVERSITY
Department of Mathematics
Prof. Dr. Mark Groves
MSc Jens Horn

Mathematics for Computer Scientists 2, SS 2018 Sheet 5

1. (a) Which of the subsets

$$
\begin{aligned}
& U_{1}=\{p \in \mathcal{P}(\mathbb{R}): p(0)=0\}, \\
& U_{2}=\{p \in \mathcal{P}(\mathbb{R}): p(0)=1\}, \\
& U_{3}=\{p \in \mathcal{P}(\mathbb{R}): p(1)=0\}, \\
& U_{4}=\left\{p \in \mathcal{P}(\mathbb{R}): \int_{0}^{1} p(x) \mathrm{d} x=0\right\}, \\
& U_{5}=\left\{p \in \mathcal{P}(\mathbb{R}): p^{\prime}(0)+p^{\prime \prime}(0)=0\right\}, \\
& U_{6}=\left\{p \in \mathcal{P}(\mathbb{R}): p^{\prime}(0) p^{\prime \prime}(0)=0\right\}
\end{aligned}
$$

of $\mathcal{P}(\mathbb{R})$ are subspaces of $\mathcal{P}(\mathbb{R})$?
(b) Which of the subsets
$S_{1}=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a=b\right\}, \quad S_{2}=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a+b=1\right\}, \quad S_{3}=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a^{2}=b^{2}\right\}$
of $\mathbb{R}^{2 \times 2}$ are subspaces of $\mathbb{R}^{2 \times 2}$?
2. (a) Show that $\left\{x^{3}-x^{2}, x^{3}-x\right\}$ is a basis for the subspace

$$
W=\left\{p \in \mathcal{P}_{3}(\mathbb{R}): p(0)=p(1)=0\right\}
$$

of $\mathcal{P}_{3}(\mathbb{R})$. Extend this basis to a basis for $\mathcal{P}_{3}(\mathbb{R})$ and hence find a complement of W in $\mathcal{P}_{3}(\mathbb{R})$.
(b) Let S_{3} be the set of all real, symmetric 3×3 matrices. Find a basis for the subspace S_{3} of $\mathbb{R}^{3 \times 3}$ and hence determine $\operatorname{dim} S_{3}$. Extend this basis to a basis for $\mathbb{R}^{3 \times 3}$ and hence find a complement of S_{3} in $\mathbb{R}^{3 \times 3}$.
[Note: An $n \times n$ matrix $A=\left(a_{i j}\right)_{i, j=1, \ldots, n}$ is called symmetric if $a_{i j}=a_{j i}$ for all $i, j=1, \ldots n$.]
3. (a) Let U_{1} and U_{2} be subspaces of a vector space V. Show that $U_{1} \cup U_{2}$ is a subspace of V if and only if $U_{1} \subseteq U_{2}$ or $U_{2} \subseteq U_{1}$.
(b) Let U_{1} and U_{2} be subspaces of a vector space V. Show that $U_{1}+U_{2}$ is a subspace of V.

