SAARLAND UNIVERSITY
Department of Mathematics
Prof. Dr. Mark Groves
MSc Jens Horn
Mathematics for Computer Scientists 2, SS 2018 Sheet 4

1. Show that

$$
T=\left\{\left(\begin{array}{c}
1 \\
\mathrm{i} \\
1+\mathrm{i}
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
\mathrm{i}
\end{array}\right)\right\}
$$

is a linearly independent subset of \mathbb{C}^{3} and

$$
S=\left\{\left(\begin{array}{l}
\mathrm{i} \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
\mathrm{i} \\
1
\end{array}\right)\right\}
$$

is a spanning set for \mathbb{C}^{3}. Use the algorithm in the Steinitz exchange theorem to replace two elements of S with elements of T.
2. (a) Show that the set \mathbb{C}^{2} is a complex vector space with respect to the vector addition and scalar multiplication defined by

$$
\binom{x_{1}}{x_{2}}+\binom{y_{1}}{y_{2}}:=\binom{x_{1}+y_{1}+1}{x_{2}+y_{2}+1}, \quad \alpha\binom{x_{1}}{x_{2}}:=\binom{\alpha x_{1}+\alpha-1}{\alpha x_{2}+\alpha-1} .
$$

Are the vectors $\binom{0}{2}$ und $\binom{2}{8}$ linearly independent in this vector space?
(b) Let X be an arbitrary set. Show that the power set $\mathcal{P}(X)$ is a vector space over the trivial field $\{0,1\}$ with respect to the vector addition and scalar multiplication defined by

$$
Y_{1}+Y_{2}:=Y_{1} \Delta Y_{2}
$$

and

$$
0 Y:=\emptyset, \quad 1 Y:=Y
$$

[Note: The power set $\mathcal{P}(X)$ is the set of all subsets of X. The symmetric difference of two sets A and B is $A \Delta B:=(A \cup B) \backslash(A \cap B)$.]
3. Let V be be a vector space and $v_{1}, v_{2}, \ldots, v_{n} \in V$. Prove the following assertions.
(a) If $\left\langle v_{1}, \ldots, v_{n}\right\rangle=V$, then $\left\langle v_{1}-v_{2}, v_{2}-v_{3}, \ldots, v_{n-1}-v_{n}, v_{n}\right\rangle=V$.
(b) If $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent, then $v_{1}-v_{2}, v_{2}-v_{3}, \ldots, v_{n-1}-v_{n}, v_{n}$ are also linearly independent.
4. Let X be a nonempty set and + be an associative binary operation on X with the following properties.
(i) The element $0 \in X$ satisfies $0+x=x$ for all $x \in X$.
(ii) For each $x \in X$ there is an element $-x$ with $-x+x=0$.

Prove that $x+0=x$ for all $x \in X$ and $x+(-x)=0$. Prove further that 0 is the only element in X with the property (i) and $-x$ is the only element in X such that $-x+x=0$.

What are the implications of this result for the vector space axioms (V1)-(V4)?

