SAARLAND UNIVERSITY

Department of Mathematics
Prof. Dr. Mark Groves
MSc Jens Horn

Mathematics for Computer Scientists 2, SS 2018 Sheet 9

1. For which values of λ and μ do the following real systems of linear equations have no solution, a unique solution, infinitely many solutions? Interpret your results geometrically.
(a) $2 x+3 y+z=5$,
$3 x-y+\lambda z=2$,
$x+7 y-6 z=\mu$
(b) $x+y-4 z=0$,
$2 x+3 y+z=1$,
$4 x+7 y+\lambda z=\mu$
2. Find all real nontrivial solutions of the equations

$$
\begin{array}{r}
2 x_{1}-3 x_{2}-x_{3}+x_{4}=0, \\
3 x_{1}+4 x_{2}-4 x_{3}-3 x_{4}=0, \\
17 x_{2}-5 x_{3}-9 x_{4}=0 .
\end{array}
$$

Show that one of these solutions satisfies the equations

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4}+1=0, \\
& x_{1}-x_{2}-x_{3}-x_{4}-3=0
\end{aligned}
$$

but none can be written as a linear combination of the vectors $(0,1,2,3)$ and $(3,2,1,0)$.
3. Show that

$$
\operatorname{det}\left(\begin{array}{ccc}
a^{2}+1 & a b & a c \\
a b & b^{2}+1 & b c \\
a c & b c & c^{2}+1
\end{array}\right)=a^{2}+b^{2}+c^{2}+1 .
$$

4. Let K be a field.
(a) Two matrices $A, B=K^{n \times n}$ are called similar if there is a matrix $P \in \operatorname{GL}(n, K)$ such that $B=P^{-1} A P$. Prove that
(i) similarity of matrices defines an equivalence relation \sim on $K^{n \times n}$,
(ii) $A \sim B$ if and only if there is a finite-dimensional vector space V over K with bases $\mathcal{B}, \mathcal{B}^{\prime}$ and a linear transformation $T: V \rightarrow V$ such that $A=M_{\mathcal{B}}^{\mathcal{B}}(T), B=M_{\mathcal{B}^{\prime}}^{\mathcal{B}^{\prime}}(T)$.
(b) Prove that two similar matrices have the same determinant.
(c) Let V be an n-dimensional vector space over K. How would you define the determinant of a linear transformation $T: V \rightarrow V$?
