SAARLAND UNIVERSITY
Department of Mathematics
Prof. Dr. Mark Groves
MSc Jens Horn

Mathematics for Computer Scientists 2, SS 2018 Sheet 11

1. Which of the matrices

$$
\left(\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right), \quad\left(\begin{array}{cc}
-3 & 1 \\
-2 & -1
\end{array}\right), \quad\left(\begin{array}{cc}
-3 & 3 \\
2 & -2
\end{array}\right), \quad\left(\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right)
$$

are diagonalisable over \mathbb{Q}, \mathbb{R} or \mathbb{C} ?
2. Let

$$
A=\left(\begin{array}{cc}
-5 & 3 \\
6 & -2
\end{array}\right)
$$

(a) Find a real, invertible matrix P such that $P^{-1} A P$ is diagonal.
(b) Find a real, invertible matrix B such that $B^{3}=A$.
3. The Legendre polynomials are defined by the formulae

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}}\left(\left(1-x^{2}\right)^{n}\right), \quad n=1,2,3, \ldots
$$

Show that $\left\{P_{n}\right\}_{n=1}^{\infty}$ is an orthogonal set in $\mathcal{P}(\mathbb{R})$ i.e. $\left\langle P_{n}, P_{m}\right\rangle=0$ for $n \neq m$, where

$$
\left\langle p_{1}, p_{2}\right\rangle=\int_{-1}^{1} p_{1}(x) p_{2}(x) \mathrm{d} x, \quad p_{1}, p_{2} \in \mathcal{P}(\mathbb{R})
$$

[Hint: derive the formula

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(1-x^{2}\right) P_{n}(x)\right)+n(n+1) P_{n}(x)=0
$$

and consider the integral

$$
\left.\int_{0}^{1}\left(P_{m}(x) \frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(1-x^{2}\right) P_{n}(x)\right)-P_{n}(x) \frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(1-x^{2}\right) P_{m}(x)\right)\right) \mathrm{d} x .\right]
$$

