SAARLAND UNIVERSITY Department of Mathematics Prof. Dr. Mark Groves MSc Jens Horn

Mathematics for Computer Scientists 2, SS 2018 Sheet 10

1. Let

 $A_n = \begin{pmatrix} 1 & -1 & 0 & 0 & \cdots & 0 \\ 1 & 1 & -1 & 0 & \cdots & 0 \\ 0 & 4 & 1 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -1 \\ 0 & 0 & 0 & \cdots & (n-1)^2 & 1 \end{pmatrix}, \qquad n = 1, 2, 3, \dots$

Compute $det(A_1)$ and $det(A_2)$, find a formula for $det(A_n)$ for $n \ge 3$ as a function of $det(A_{n-1})$ and $det(A_{n-2})$ and prove by strong induction that

$$\det(A_n) = n!, \qquad n = 1, 2, 3, \dots$$

2. Compute the eigenvalues and eigenspaces of the complex matrices

$\begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 2 & i & 1 + 2i \end{pmatrix}$	$(1 \ 1 \ 1 \ 0)$
$\begin{pmatrix} 1 & 0 & -1 \\ 1 & 0 & 1 \end{pmatrix}$	$\left(\begin{array}{ccc} 2 & 1 & 1+21 \\ \vdots & 0 & \vdots \end{array}\right)$	$1 \ 1 \ 0 \ 1$
$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 & -1 \\ 1 & 2^2 & 2^2 & 0 \end{bmatrix}$	$1 \ 0 \ 1 \ 1$
$\begin{pmatrix} 2 & 2 & 3 \end{pmatrix}$	$\begin{pmatrix} 1-21 & 1 & 0 \end{pmatrix}$	(0 1 1 1)

3. Let K be a field. The *trace* of a matrix in $K^{n \times n}$ is the sum of its diagonal entries.

(a) Prove that $\operatorname{tr} AB = \operatorname{tr} BA$ for all $A, B \in K^{n \times n}$, and that two similar matrices in $K^{n \times n}$ have the same trace. How would you define the trace of a linear transformation $T: V \to V$ for an *n*-dimensional vector space V over K?

(b) Let $A \in K^{n \times n}$ and c be its characterisic polynomial. Show that

- (i) the coefficient of λ^n in c is $(-1)^n$,
- (ii) the coefficient of λ^{n-1} in c is $(-1)^{n-1} \operatorname{tr} A$,
- (iii) the coefficient of λ^0 in c is det A.

[Hint: Study the proof that c is a polynomial of degree n.]