SAARLAND UNIVERSITY

Department of Mathematics
Prof. Dr. Mark Groves
MSc Jens Horn

Mathematics for Computer Scientists 2, SS 2018 Sheet 10

1. Let

$$
A_{n}=\left(\begin{array}{cccccc}
1 & -1 & 0 & 0 & \cdots & 0 \\
1 & 1 & -1 & 0 & \cdots & 0 \\
0 & 4 & 1 & -1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 & -1 \\
0 & 0 & 0 & \cdots & (n-1)^{2} & 1
\end{array}\right), \quad n=1,2,3, \ldots
$$

Compute $\operatorname{det}\left(A_{1}\right)$ and $\operatorname{det}\left(A_{2}\right)$, find a formula for $\operatorname{det}\left(A_{n}\right)$ for $n \geq 3$ as a function of $\operatorname{det}\left(A_{n-1}\right)$ and $\operatorname{det}\left(A_{n-2}\right)$ and prove by strong induction that

$$
\operatorname{det}\left(A_{n}\right)=n!, \quad n=1,2,3, \ldots
$$

2. Compute the eigenvalues and eigenspaces of the complex matrices

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & 2 & 1 \\
2 & 2 & 3
\end{array}\right), \quad\left(\begin{array}{ccc}
2 & \mathrm{i} & 1+2 \mathrm{i} \\
-\mathrm{i} & 0 & -\mathrm{i} \\
1-2 \mathrm{i} & \mathrm{i} & 0
\end{array}\right), \quad\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right) .
$$

3. Let K be a field. The trace of a matrix in $K^{n \times n}$ is the sum of its diagonal entries.
(a) Prove that $\operatorname{tr} A B=\operatorname{tr} B A$ for all $A, B \in K^{n \times n}$, and that two similar matrices in $K^{n \times n}$ have the same trace. How would you define the trace of a linear transformation $T: V \rightarrow V$ for an n-dimensional vector space V over K ?
(b) Let $A \in K^{n \times n}$ and c be its characterisic polynomial. Show that
(i) the coefficient of λ^{n} in c is $(-1)^{n}$,
(ii) the coefficient of λ^{n-1} in c is $(-1)^{n-1} \operatorname{tr} A$,
(iii) the coefficient of λ^{0} in c is $\operatorname{det} A$.
[Hint: Study the proof that c is a polynomial of degree n.]
